Journal of Organometallic Chemistry, 165(1979)C10–C12 © Elsevier Seguoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

ORGANONICKEL(III) COMPLEXES

KEISUKE OGURO, MASANORI WADA* and NOBORU SONODA

Department of Petroleum Chemistry, Osaka University, Yamadakami, Suita, Osaka 565 (Japan) (Received August 22nd, 1978)

Summary

Paramagnetic organonickel(III) complexes, $RNi(PPhMe_2)_2Br_2$ (R = CCl_2 =CCl or C_6Cl_5), have been prepared by the reaction of *trans*-RNi(PPhMe_2)_2Br with *N*-bromosuccinimide.

Although some nickel(III) complexes have been reported [1-3], few organonickel(III) complexes have hitherto been known, except for RNi(PPh₃)₂I₂ (R = CF₃ or C₃F₇) which were obtained accidentally [4]. We report here the first intentional preparation of organonickel(III) complexes. While this work was in progress, it was suggested that the reductive elimination of complexes R(R')NiL₂ occurs through trivalent nickel species [5-7].

Treatment of trans-CCl₂=CClNi(PPhMe₂)₂Br with N-bromosuccinimide (NBS) in acetone affords a pentacoordinated organonickel(III) complex CCl₂=CClNi(PPhMe₂)₂Br₂, as shown in eq. 1.

$$\begin{array}{c} L & L & Br \\ R-Ni-Br \xrightarrow{I} Br & R-Ni \\ L & L & Br \end{array}$$

(1)

 $(L = PPhMe_2, R = CCl_2 = CCl \text{ or } C_6Cl_5)$

The nickel(III) complex is stable in the solid state. Evidence for formation of this complex includes (i) the elemental analyses, (ii) the presence of two ionic bromide ligands, (iii) its nonelectrolyte character in a freshly prepared 10^{-3} M dichloromethane solution, (iv) the magnetic susceptibility ($\mu_{eff} = 1.74 \,\mu_B$ at 291 K), which is consistent with the presence of low-spin d^7 nickel(III), (v) the electronic spectrum of its dichloromethane solution which exhibits absorptions at 1050 (ϵ 50), 840 (shoulder), 700 (ϵ 180), 493 (ϵ 6400), 425 (ϵ 6000), 368 (ϵ 8300) and 320 (ϵ 8100) nm, an analogous spectrum having been reported for Ni(VPP)Br₃* [2], and (vi) the EPR spectrum of a dichloromethane solution at

^{*}VPP = bis(diphenylphosphino)ethylene.

room temperature which shows a single broad signal. The observed g value (2.19) falls in the range expected for nickel(III) species rather than for any nickel(II)-stabilized radical ligand [3].

The dark red solution of the complex in nonpolar solvents is sensitive toward heat or daylight to give a diamagnetic green solution (λ_{max} 587 nm). No evidence of nickel—carbon bond cleavage has been obtained at present, but addition of alcohols or water to the green solution resulted in the formation of the starting nickel(II) complex *trans*-CCl₂=CClNi(PPhMe₂)₂Br. Characterization of the species present in the green solution is under investigation.

A pentachlorophenyl analog, $trans-C_6Cl_5Ni(PPhMe_2)_2Br$, also afforded a paramagnetic complex, $C_6Cl_5Ni(PPhMe_2)_2Br_2$, which showed analogous spectral, physical and chemical properties.

Experimental

Preparation of trans- $CCl_2 = CClNi(PPhMe_2)_2X$ (X = Cl, Br). To a suspension of Ni(PPhMe_2)_2Cl_2 (2.00 g, 5 mmol) in 20 ml of tetrachloroethylene/ethanol (1/1) was added dropwise a solution of NaBH₄ (0.4 g, 10 mmol) in 30 ml of ethanol at ca. 50°C under nitrogen. The solvents were removed by heating under reduced pressure, and the residue was extracted with diethyl ether/water. The ethereal layer, on concentration, gave brown crystals of trans- $CCl_2 = CClNi(PPhMe_2)_2Cl$ (1.88 g, 75%), which were purified by recrystallization from methanol/water. The product was identified by its melting point and IR and ¹H NMR spectra [8].

The chloride complex was dissolved in methanol containing NH₄Br. The solution was refluxed for 10 min, and addition of water gave brown crystals of *trans*-CCl₂=CClNi(PPhMe₂)₂Br, in quantitative yield, m.p. 134–135°C. (Found: C, 39.78; H, 4.18. C₁₈H₂₂P₂Cl₃BrNi calcd.: C, 39.65; H, 4.07%). ¹H NMR (CH₂Cl₂): δ (CH₃) (ppm) 1.62t and 1.69t, 12H (²J_P + ⁴J_P = 7.5 Hz); δ (C₆H₅) 7.35–7.86m, 10H.

Isolation of nickel(III) complexes. To a solution of trans- $CCl_2=CClNi(PPhMe_2)_2Br$ (0.55 g, 1 mmol) in 5 ml of acetone was added N-bromosuccinimide (0.18 g, 1 mmol) in 3 ml of acetone to give a dark red solution. Addition of methanol (5 ml) gave dark red crystals of $CCl_2=CClNi(PPhMe_2)_2Br_2$ (0.44 g, 53%), m.p. 112–113°C (dec). (Found: C, 34.89; H, 3.68; Br, 26.0. $C_{18}H_{22}P_2Cl_3Br_2Ni$ calcd.: C, 34.58; H, 3.55; Br, 25.6%).

trans-C₆Cl₅Ni(PPhMe₂)₂Br reacted with N-bromosuccinimide in similar manner to give C₆Cl₅Ni(PPhMe₂)₂Br₂ in a yield of 57%, m.p. 133–136°C (dec). (Found: C, 36.08; H, 2.77; Br, 21.0. C₂₂H₂₂P₂Cl₅Br₂Ni calcd.: C, 35.35; H, 2.98; Br, 21.5%). Electronic spectrum (CH₂Cl₂): $\lambda_{max}(\epsilon)$ 1060 (33), 840 (28), 466 (8400), 350 (7900), 318 (11400) nm. Magnetic susceptibility (powder, 289 K): $\mu_{eff} = 2.05 \mu_{B}$. EPR (CH₂Cl₂, 77 K): g = 2.20 (broad singlet).

Decomposition of nickel(III) complexes. A solution of $CCl_2=CClNi(PPhMe_2)_2$ -Br₂ (0.313 g, 0.5 mmol) in 2 ml of benzene was refluxed for 10 min under nitrogen. The color of the solution turned to deep green. Addition of methanol (1 ml) gave an orange solution which was concentrated to dryness. The residual solid was recrystallized from methanol to give *trans*-CCl₂=CClNi(PPhMe₂)₂Br (0.175 g, 64%).

Similar treatment of C₆Cl₅Ni(PPhMe₂)₂Br₂ gave trans-C₆Cl₅Ni(PPhMe₂)₂Br, in 82% yield.

References

- 1 D.W. Meek, E.C. Alyea, J.K. Stalick and J.A. Ibers, J. Amer. Chem. Soc., 91 (1969) 4920; and ref. therein.
- 2 M.J. Crook, W. Levason and C.A. McAuliffe, Inorg. Chem., 17 (1978) 766. 3 R.S. Drago and E.I. Baucom, Inorg. Chem., 11 (1972) 2064.
- 4 J. Ashley-Smith, M. Green and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1969) 3019.
- 5 D.G. Morell and J.K. Kochi, J. Amer. Chem. Soc., 97 (1975) 7262.
- 6 T.T. Tsou and J.K. Kochi, J. Amer. Chem. Soc., 100 (1978) 1634.
- 7 M. Almemark and B. Åkermark, J. Chem. Soc., Chem. Commun., (1978) 66.
- 8 M. Wada, K. Kusabe and K. Oguro, Inorg. Chem., 16 (1977) 446.